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Dynamic correlations in phase ordering: the l/n-expansion 
reconsidered 

J G Kissner and A J Bray 
Department of Theoretical Physics, The Universiry, Manchester M13 9PL, UK 

Received 20 October 1992 

AbslraeL The ordering dynamics of a system with a non-conserved order parameter is 
considered following a quench into the ordered phase from high temperature. Newman 
and Bray have set up an expansion in powers of 11. for the O(n) model to obtain 
correlation funnions and the two-lime exponent A, but their calculation conlains a 
simplifying assumption which is incorrecl. In this paper, tight upper and lower bounds 
for X are obtained as a function of the space dimension d.  There bounds exdude the 
result of Newman and Bray, although the dependence of X on d is qualitatively very 
similar. 

Comparison wilh simulations shows that the first-order 11” calculation docs not agree 
with numerical results as well as previously thought. 

1. Introduction 

Quenching a system from the high-temperature phase to below the critical point T, 
gives rise to the growth of ordered domains, which obey dynamic scaling at late times, 
i.e. spatial correlations are time-independent when lengths are measured in units of 
the characteristic scale (‘domain size’) L ( t ) ,  where L ( t )  - t ’IZ for a non-conserved 
order parameter [l]. 

Of special interest is the dynamic response function 1231 G,(t) = 
[a@i(t)/a@i(O)], where q$L(t) is a Fourier component of the vector order parame- 
ter, and i denotes a component in spin-space; t is the time elapsed since the quench, 
and [. . .] represents an average over initial conditions. We will assume that the initial 
conditions correspond to an equilibrium state at high temperature. 

For a non-conserved order parameter (‘model A’ [4]) G,(t) has the scaling form 

Gc(t) = t’/”f(kt’/’) (1) 

where X is an exponent associated with non-equilibrium correlations [2,3], and z = 2 
for a non-consewed order parameter+. Form (1) holds in the scaling limit t - m, 
12 + 0, with k z t  arbitrary. f(r) is a scaling function with f(0) = constant. 

t It has no1 been demonsIrafed convincing6 that I = 2 for general non-conserved vector Belds. Numerical 
simulations for n = 2 and d = 2, 3, for example (see, e.g., Mondello and Goldenfeld [SI), suggest values 
of z slightly less than 2. Howver, simulations with n > d + 1. where no topological defects are present, 
are fully consistent with I = 2 [h,7].) The present large-n study belongs to the latter regime. 

03054701m/o71571+18x17.50 @ 1993 IOP Publishing Ltd 1571 
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In this paper we perform an expansion to first order in 1/n for an n-component 
vector order parameter to calculate A,/,, where we define 

x = x  I /% + W / n 2 ) .  (2) 

A diagrammatic technique to perform this task has been developed by Newman and 
Bray [2,3]; [3] will be called NB in the following. The main difficulty is the evaluation 
of the ‘dressed vertex’. NB invoked a certain approximation which, they argued, 
becomes valid in the scaling limit. We shall show, however, that the expression 
obtained by NB is incorrect, although it captures some correct featum and, indeed, 
provides a weak upper bound on the correct result. 

Because of the mathematical complexity involved in calculating the dressed vertex, 
we have not been able to obtain a closed expression for We have, however, 
found tight bounds which determine AI,,, within a few per cent. Although the NB 
result does not lie within the bounds, the graph of X against d has a very similar 
form. 

2. The l / n  expansion 

First we introduce the model, notation, some basic results for n - w and the 
diagrammatic method to perform an expansion to first order in l ln .  This is largely 
based on NB, where a more detailed presentation can be found. We shall then show a 
convenient way to extract A,/,, , requiring the evaluation of a single diagram instead 
of the five diagrams which naively appear. 

21. The model 

The model A dynamics (non-conserved order parameter) of soft spins in Fourier 
space can be described by the Langevin equation: 

where Ld is the system volume and z , j  Iabel Cartesian components in an n- 
dimensional order parameter space. The distribution of initial conditions is taken 
to be Gaussian, with mean zero and correlator 

[&(0)&,,(’3)1 = 6 j j 6 , , k , A k .  

A quench from high temperature corresponds to A, = ( P, + I C 2 ) - ’  - T;’ = A,, we 
can therefore assume that A, is independent of IC. The thermal noise t b ( t )  has been 
included to provide a source term for the definition of a general response function. 
But throughout the calculation we choose the temperature T = 0 for convenience. 
Thermal noise is expected to be irrelevant (in the renormalization group sense) for 
phase ordering [SI: this has been shown explicitly for n = 00 [3]. 

The response to initial conditions is now defined as [2,3] 
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while the general (two-time) response function is 

Finally, the (non-equilibrium) correlation function is 

Ck(t , t ' )  9 [&(t)@lk(t')]. 

22. Large-n results 
For n -+ C O ,  it is possible to solve equation (3) exactly [2,3,9]. The 'n = CO' 

propagator Gp(t) is then given by 

We are not generally interested in initial non-universal behaviour, so we will use the 
asymptotic scaling form for correlation and response functions; for rt B 1, Azt  B 1 
(A is the momentum cut-off) and k2t k e d  we get 

with 1" given by 

t,dtZ = AKdu/r Kd = (8?r)-d/Z.  (9) 

The two-time response and correlation functions then read [2,3] 

where S,(t) 

2.3. 1 In erpansion 
Whereas the large-n result required summing diagrams that have as many vertices 
as closed loops, the l l n  correction is obtained by including diagrams with one more 
vertex than closed loops [2,3]. Keeping close to the notation of NB we write 

C,(t, t) is the structure factor and Sp(t) is its large n form. 

and 
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where G;(t)  and Sg(t) are given by [2,3] 

J G Kirsner and A J Bray 

Gi(  t) = 2 1 ’  dtl  l’ dt, Gr( t ,)Gr( t , t,)Xjf’( t l ,  t , )  (14) 

Sg(t) =2AG’,( t )G(t)+ l d t 1  ~ d t , G ~ ( t , l , ) G ~ ( t , t , ) Z t ) ( t , , t , ) .  (15) 

The five dlagrams for Z g ) ( t l , t , )  are given in figure 2 of NB. The single diagram 
for Zf)(t l ,  a,) is figure 3 of NB, and is reproduced as figure 1 of the present paper. 
We shall show below that this single diagram suffices to determine the exponent X 
to O(l/n). Note that factors of l / n  are written explicitly in (12) and (13), and are 
therefore absent from the two ‘self-energ’ functions C;. The dressed vertex v k ( t ,  t‘), 
which appears as a w a y  line in figure 1, is defined by the ‘bubble sum’ of figure 2. Its 
calculation provides the main technical challenge of the 1/n expansion, but before 
we start the actual calculation we first show how to reduce the work involved. 

Figwe 1. Diagram for $ ( t , , t * ) .  defined by 
equation (15) for lhe equal-time structure lactor: a 
circle represents the comelator of the initial conditions; 
a line the response function Gm (given by (8) if 
connected to a circle, or by (15) othenvire); and a 

+I t z  way line the dressed vertex V .  

Feure 2. Diagrammatic equation, equivalent to equation (=), for the dressed vertex 
vk(t t ,  t z ) :  a broken line represene the bare vertex U; the other diagrammatic elements 
are as described in the caption to figure 1. 

2.4. A convenient way to obtain A,,,, 

Like G,(t) and S k ( t ) ,  we can also expand A in powers of 1/n 
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By definition (2), Ail,, = Am t A'/n and Am = d/2 from equations (1) (with z = 2) 
and (8). The obvious way to obtain A' is to expand the response function Gb(t),  
equation (l), in powers of l / n .  It suffices to consider momentum k = 0 

with f(0) = 1 + O(l/n) from (8). Comparison with (12) shows that 

i.e. A' is determined by the prefactor of the logarithm of GLzu(t). But calculating 
the five diagrams required for G' is a tedious task. 

Instead, we suggest an alternative way. We shall see that a natural assumption 
makes our task easier; namely, we shall assume that [ ( 4 ( ~ ,  t ) ) Z ]  - r / u  for t + 00, 

which is the statement that, for large times, the length of the order parameter field 
approaches its equilibrium value. With the properly that S,(t) can be written in 
scaling form, this implies the following general form for the structure factor 

S,(t) = L ( t ) d g ( r c L ( t ) )  = td/Zg(rct ' /Z) .  

We notice that Sp(t) has this form. Comparing (13) and (19) yields 

sL=,(t) = tdf2constant. 

Equations (18) and (20) can now be used to simplify (15) 

Differentiating both sides with respect to t gives 

The last equation makes use of the symmetry of Xt ' ( t , ,  t2) with respect to t i  and 
t,. Calculating Z r ) ( t l , t z )  involves evaluating only one diagram and is therefore 
preferable to calculating G'. The price we have to pay for this short cut is that we 
can obtain only the exponent, not scaling functions. 

All of the following calculation will be devoted to the calculation of C f ) ( t , , t 2 ) ,  
which first requires knowledge of v k ( l r  t'). 
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3. The dressed vertex 

As already mentioned, the dressed vertex vk( t , t ' )  embodies the major difficulty of 
the 1/n calculation. In order to make progress, we shall content ourselves with 
calculating the integral over wk(t , t ' )  multiplied by a certain class of functions, which 
we shall call f k ( t ) ,  rather than focusing on uk( t , f ' )  itself. The resulting Volterra 
integral equation is still diflicult: the only solution we can offer is in the form of 
upper and lower bounds 

There are two distinct ways to set up a self-consistent equation for wk(t , t ' ) .  The 
one we have chosen differs, for practical reasons, from the one employed by NB. The 
difference is that we have chosen increasing time to the left in figure 2, whereas time 
increases to the right in the corresponding figure (figure 4) in NB. The translation of 
figure 2 is 

J G Kissner and A J Bray 

v k ( t ,  t') = u6(t - t') - 2 A u  dt"vk(t", f ' )L-d ~p(t)G~(t")G~+k(t, t"). 
P 

(23) 

The momentum summation can be performed easily and (using (9)) leads to 

t v k ( t , t ' )  = u 6 ( t - t ' ) - 2 r  dt"uk(t",t')exp 

We now introduce a function gk(t)  by the following definition 

where fk(t) is arbitrary, subject to thc conditions 

(26) 
a 

z . f k ( t )  2 f k ( O )  = O. 

The motivation for introducing g and f will become clear later on, when %'e shall 
need to evaluate integrals of the form (25). The self-consistent equation for vk( t ,  t') 
can now be replaced by a similar one for gk(t)  

Obviously, a first simplification has occurred by the trivial fact that g k ( t )  depends 
only on one time variable t instead of two. As a technical trick, we now drop the 
gk(t)  term on the left-hand side 

This can be done because we are only interested in the asymptotic, i.e. scaling 
limit, where the term in question is negligible. The reason for it can be seen on 
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purely dimensional grounds: for k2f  fixed, u / r  and rt are the only dimensionless 
combinations, so an expansion in 1/r  is equivalent to an expansion in l/rf. 
Equation (28) therefore represents (27) to zeroth order with respect to an asymptotic 
expansion in l/rf, i.e. g = gu + gJrt + . . ., has been truncated after the first term. 
An illustration of this procedure is the k = 0 case where the solutions of (27) and 
(28) can be compared explicitly. 

It is worth mentioning that it is possible to keep the gk(t) /2r  term. This leads 
eventually to the same results, but the underlying ideas are unnecessarily obscured. 

Differentiation with respect to 1 transforms (28) to 

This is an inhomogeneous Volterra equation of the second kind with bounded kernel. 
The solution of this type of equation can be obtained by infinite iteration, which 
always leads to a convergent series [IO]. 

Only for k = 0 can (27) and (28) be solved easily. For general 12 we have been 
unable to find a closed form expression for g. Instead we shall establish upper and 
lower bounds on g. 

3.1. Lower bound 
First of all let us state the simple inequality 

which will be used at various points. With the assumed semi-positiveness of fk(t), 
(equation (26)), and (30), a lower bound on gk(f)  can be obtained immediately by 
truncating the iteration of (29) at the first non-trivial term 

In particular 

which means that gk(t) is also semi-positive. 

3.2 Upper bound 
A good upper bound on gk(t)  is more ditficult to achieve than a lower bound. We 
write (29) in the somewhat complicated-looking way 

where R k ( t )  is 

Rk( t )  E l ' d f '  ((:y - 1) gk(f')exp (-? (1 - r)) . (34) 
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Comparing (33) with (B), we can simplify (33) to 

" i n g  our attention to Rk(t) ,  we notice Rk(t) < 0, which allows us to use the 
lower bound (30) on the exponential, and then (32), for an upper bound on R 

This, together with the restriction (26) that f k ( 0 )  = 0, results in our upper bound on 
g k ( t )  

Alternatively, we could have discarded Rk(t)  altogether to get the weaker bound 

Equations (32) and (38) provide a pair of weak bounds which are useful because of 
their simplicity. These bounds will be considered later on where, in particular, it will 
be shown that the bound provided by (38) reproduces the NB result. 

Figure 3. The element Dh(t l ,  t Z ) ,  whose walualion 
represents the bulk of the work needed in evaluating 

t' t2  C r ' ( t l ,  t ~ ) ,  lhe diagram of figure 1. 

4. The element D 

The element D k ( t l , t 2 )  shown in figure 3 constitutes the main part of @ ( t , , t 2 ) .  
Figure 3 corresponds to the mathematical expression 

D k ( t l , t 2 )  = 2:L'dt' ~ t z d t " v k ( i , , t f ) v k ( t 2 ,  t") 
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where we have again used (8) for the response functions, and exploited (9). In order 
to apply the results of the previous sections. we now write 

(40) 
2 r2 

Dk( t , , t 2 )  = x- dt' vk( t l ,  t f )Fk(t ' ,  i2)e-kz2'/2 

where 

Using (31), (37) and (40), the inequalities for D can be written down immediately 

and 

Here, the symbol a, denotes differentiation with respect to the first time variable (t l  
or t') and a, will be used in an equivalent way for the second one (tz  or t"). We have 
not yet shown that alFk(tl,t2) 2 0 and Fk(tl = O,t,) = 0, which are required for 
the two inequalities above to be valid. The second condition is satisfied trivially, as 
can be seen from the definition of F, and the first one will emerge from the bounds 
on a,F, which are needed together with F in (42) and (43). 

Let us start with F. Equation (41) can be easily mapped onto the form (S), and 
the resulting bounds (see (42) and (43)) on F are 

and 

where we have introduced f ( t l ,  t 2 )  as 

Clearly, f(t,, t ,  = 0) = 0, and aZf(tl, t 2 )  2 0 as required. 
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As a second ingredient in (42) and (43), bounds on alFk(t ' , tz) are to be 
obtained. Going back to the definition of F, equation (41), and using (46), we 
have 

(47) 
2 I!  2 alFh(t' , t2) = 1 dt"vk(tZ,i")a,f(t',t")e-kl 1 . 

12 

Again, it is straightfonvard to identify this with the form (25) and the inequalities can 
be read off as 

2 + ~ e - k 2 t z / 8  2 l dt" (E) a,,f(t', if')}. (49) 

It is simple to convince oneself that a,f(t,,t, = 0) = 0, and 8,S2f(tlr t z )  2 0 as 
required. 

AU we have to do now is to substitute the formulae for F and a,F back into the 
inequalities for D, equations (42) and (43). This leads without any difficulty to the 
lower bound 

r t N  2 + T e  k4 -kz(tl+h)/8 1" dt' [ dtft (L) t 1 t 2  alzf(if,itJ)} 

$(tl, t,) = Jt' dt' (I)" a,,f(t', t 2 )  + JG" dt" (E)" a,,f(tl,t"). 

(50) 

where we have introduced the definition 

(51) 
U 1 

The last term of (SO) can be conveniently bounded, as shown in appendix A, and our 
final expression is 

D k ( t l 7 t 2 )  3 2nKd {alzf(tldz) -I- -p " -k2(t i t tz ) /8+(t , ,  t 2 )  
e-kz(ti t l i) /Z 

( d  + 6 ) ,  ( t ,  + iZ)d/2+Z . (52) 1 k4 -kz ( t ,+ t , ) / s  d ( d  + 2) (t,t,)d/z+l 
t -e 4 

For the upper bound we have to go through some algebra. It turns out that the 
following manipulation is of importance 
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and a similar inequality with f replaced by a,f. The result of :his is 

Keeping the last negative term in (54) would not be a substantially better bound, so 
we drop it. We also note that (54) has lost its symmetry with respect to t l  and t,. 
Clearly, we could go through the whole calculation with t1 and t ,  interchanged and 
would end up with the 'mirror' version of (54). Adding (54) and its 'mirror' inequality 
yields a symmetric form, 

where we have defined x(tl, t z )  by 

We briefly pause for some remarks on the nature of the inequalities above. The 
bounds we derived for D are the consequence of a chain of quite arbitrary-looking 
inequalities, which might appear fairly crude in some places. The underlying logic of 
our choice is guided by the fact that the values of D for k2t of order unity dominate 
the final integrals and therefore determine the value of A,/, . The inequalities for D 
are designed so that they come close to this requirement in fact, they are exact (i.e. 
equalities) up to order k2.  

5. Simpler bounds on D 

The previous section contains a number of disencouragingly large expressions, which 
are mainly due to the the generic inequalities (31) and (37). For the purpcse of 
clarity and because the result will turn out to be of some interest in itself, we shall 
go through the same calculation again but with the bounds (31) and (37) replaced by 
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the looser but much simpler bounds (32) and (38). The equivalents of equations (42) 
and (43) are 

J G Kissner and A J Bray 

whereas the bounds on F are simply 

The pair of inequalities for 8,F is also easily deduced; it turns out that the 
replacement of F, f, and 8,f in (59) and (60) by a,F, a,f, and &f respectively 
yields the desired result. Substituting in (57) and (58) yields 

(62) 

A remarkable fact about this specific upper bound for D is that it makes contact with 
the calculation of NB. If one derives D by using their (incorrect) dressed vertex U, 
one gets exactly this upper bound (62) as an equality for D; so NB managed to find 
a ‘zeroth-order’ upper bound instead of the exact result 

6. The result for A’ 

In the previous sections we have obtained the main ingredient for the calculation of 
A‘, namely D. The ‘self-energy’ @LU(1, t z )  is, according to the diagram of figure 1, 

CtLo( t ,  t 2 )  n A  L-d G~p(t)G~(tZ)Dp(t, t 2 ) .  (63) 
P 

The additional factor n takes into account that a 1 / n  has been pulled out to appear 
explicitly in (13). E&( t , t z )  can be substituted into (22) to obtain A’ 
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where we have used (8) for the response functions GF in the last step. As a next 
step, the inequalities (52) and (55) for D have to be substituted into (64). 

Let us, nevertheless, first try the looser bounds (61) and (62), which have been 
derived without much work. The momentum sum in (64) can be performed without 
difficulty, and the remaining time integration can be simplified with a little trick, 
which is shown in appendix B. The result is 

w ( d )  < -A '  < $w(d )  

w ( d ) ~ ( $ ) ~ / ' B ( d / 2 +  1 , d / 2 +  l ) $ d ( f d +  1) (66) 

(65) 

where 

and B(z,y)  is the beta function [ll], B(z,y) = r(z)r(y)/r(z + y). The 
inequalities above are our first bounds on A'. Clearly, A' is negative, as expected. 
Furthermore, the value for A' obtained by Newman and Bray AhB = -($)w(d) is 
just our lower hound (upper bound on -A), which is no surprise after the comment 
in the last section. 

After this first insight, we now want to substitute the tighter inequalities (52) and 
(55) into (64). As before, the momentum sum is simple, but the time integration 
requires further effort. A few integrals are the same as before, but the integrals 
involving +(d) and ~ ( d )  lead to the functions I + ( d )  and I x ( d ) ;  they can be found 
in appendix C The final inequalities for A' are 

and 

+ 11- 9 (gZt2 (1-; ($ + 1)) I x ( d ) ] }  

where w ( d )  is given by (66). The results are plotted in figures 4 and 5, which also 
include AhB from NB. Their result does not fall inside these improved bounds any 
more. Figure 4 shows a direct plot of -A' against d, while figure 5 shows that factoring 
the function w(d), equation (66), from A' removes much of the d-dependence. For 
large d our improved bounds approach the weaker bounds derived in section 5. These 
are indicated by chain lines in figure 5 the upper line, - A ' / d  = $', is the NB result. 
Also included in figures 4 and 5, as the broken curve, is the result of applying the 
approximate theory of Mazenko [12] to the O(n)  vector theory [13,14], and then 
expanding the result to order l/n. This gives [13,14] -Ahm = (d/2)3-d/z. It 
can be seen that, apart from a small range of d, Ahm lies outside our bounds and 
therefore cannot be the exact result. 'bble 1 gives more quantitative information: 
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U ...................................... 

1.b 11 ~ .._ __..- 1 '  
I . .  - - 

I ................................... 

.. ._ 
12 . . . .  

d d 

Figure 4. Bounds for -A' as a function of d. Figure 5. Bounds for - A ( / w ( d ) :  continuous 
The mntinuous cuwes are our best upper and curves, best bounds; chain lines, weaker bounds 
lower bounds; the chain CUNe is the NB result, calculated in seclion 5-the upper of these 
while the broken curve is the result of applying the reproduces the NB RSUII 16P; broken curve, rcsult 
approximate Mazenko theory. of applying Mazenko theory. 

Table 1. Upper and lower bounds Cor A', the coefficient of 1/n in the expansion of the 
No-time exponent A. for various spatial dimensions d. is our best estimate, obtained 
by mGng the mean of the upper and lower bounds. AhB is the result of Newman and 
Bray [2,3], and coincides with the weak lower bound on A' (= upper bound on -A'!) 
derived in section 6. 

d x:p -Yw A:, %B 

1 -0.1827 -0.2007 -0.1917?Z4.7% -03023 
2 -0.2502 -0.2811 -0.2657?ZS.S% -03951 
3 -0.2471 -0.2831 -0.2651?Z6.8% -0.3779 
4 -0.2114 -0,2462 -02288&7.6% -0.3160 
6 -0.1241 -0.1492 -0.1367&9.2% -0.1806 
m a  0 0 0 

Akt denotes our estimated value for A', which is just the mean of A&, the upper 
bound, and A[m. the lower bound. 

It is also interesting to compare our results with computer simulations carried 
out in d = 1 for n = 3,4,5 [6] and in d = 2 for n = 4,s [7l. In the absence 
of topological defects such as vortices, we expect a 1/12 expansion to be a suitable 
description. These simulations (especially for d = 1) had found to be in 
surprisingly good agreement with the data, and it was therefore conjectured that 
a 1/n expansion at the zero-temperature k e d  point converges more rapidly than, 
for example, in critical phenomena. a b l e  2 shows the new comparison. It is clear 
that the agreement between simulation and calculation is not as good as it appeared 
to be using the incorrect NB result This indicates the necessity of going beyond 
first order in l /n  to obtain quantitatively accurate estimates. Given the technical 
difficulties occurring at O ( l / n ) ,  however, going to higher order does not seem a 
practical proposition at this time. 
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Table 2. Comparison of the upper and lmver bounds on A, correct to order 11% and 
their mean Ay,,, with simulation results in d = 1 [6] and 2 171. Note that the improved 
estimates of At," are mer from the simulalion results lhan the previous (incorrect) 
11" result of NE. 

d n A'" A:? Ap;, AY!" 

1 3 0.352(2) 0.439 0.433 0.436f0.7 0.399 
4 0.420($ 0.454 0.450 0.452f0.4 0.424 
5 0.436(2) 0.463 0.460 0.462f0.4 0.440 

2 4 0.89(1) 0.937 0.930 0.934f0.4 0.901 
5 0.91(1) 0.950 0.944 0.947f0.3 0,921 

7. Conclusion 

Tight upper and lower bounds have been obtained for the O(l/n) contribution 
A' to the exponent X that characterizes two-time correlations in the phase-ordering 
kinetics of non-conserved fields. These bounds determine A' to within a few per cent 
for physical values of the spatial dimension d. The bounds exclude the result derived 
by NB, which we therefore conclude is incorrect. 

The error in the NB calculation is quite subtle. Rather than go through their 
calculation in detail, we refer the interested reader to equations (23)-(25) of NB. 
Equation (24) gives an expression for the dressed vertex vk( t ,  t') as the product of 
a Simple function f k ( t , t ' ) ,  given explicitly by equation (23) of NB, and a correction 
factor p k ( t , t ' )  given by (25). The latter factor has a leading term of unity, plus 
a series of t e r m  which, term by term, give negligible (i.e. of relative order 1 / ~ t )  
contributions to final integrals. It was therefore argued that these additional terms 
could be dropped in the scaling limit. While these terms are individually negligible, 
however, there are an infinite number of them of the same order, so that a careful 
analysis is required before they can be discarded. The result of such an analysis 
is that these terms cannot be dropped their sum provides contributions to final 
integrals which are of the same order as the nominally leading order contribution. 
This invalidates the NB result. 

Because of the technical difficulties entailed, we have not attempted to obtain 
bounds on scaling functions in this paper. However, because the dressed vertex, 
incorrectly evaluated by NB, plays a crucial role in the calculation not only of X itself 
but also of the scaling functions, it is extremely unlikely that the scaling functions 
obtained by NB are correct, although they probably capture the qualitative features 
of the correct results, just as their expression for A' captures qualitatively the d- 
dependence. 

We conclude by noting that it would be very nice to find a way to solve in closed 
form the integral equation (24), which is the source of all our technical difficulties. 
After all, it is only a linear equation. 
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Appendix A. Lower bound on a special integral 

We are interested in a lower bound for the integal 

J G Kissner and A J Bray 

I t l i  2 

t l t2  
I =  [ dt' it* dt" ("> D 1 2 f ( t ' ,  1") 

where f ( t ' ,  t") is defined in (46). The following inequality is easily established 

Applying this scheme twice yields 

Thii is the desired result. 

Appendix B. Some integrals 

A class of integrals can be solved by using the following identity 

where B ( r , y )  is the beta function [Ill. TO prove this, one makes a change of 
variable y = 1/x 

( l t x " )  
1 XB 

= l dx (1 + x ) 2 B t Z t "  

Adding the two equations leads to an integration from 0 to CO and this can be 
identified as the sum of two beta functions. 

With the definition of f ,  equation (a), (72) can be utilized to show 
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Appendix C. Calculation of I tp(d)  and I , (d)  

It is mnvenient to first rewrite @ and x. defined by (51) and (56) respectively, as 
series originating from continued integration by parts. The generic form is 

Then the following integrals can be evaluated using (72) of appendix B. ?b save 
writing we introduce a d / 2  t 1 

where I + ( d )  is the following infinite sum (a d / 2  + 1) 

In a similar way one obtains 

X( t ' t z )  = -(a- 1 l )aB(a,a)I , (d)  

where 

and, as before, a G d / 2  + 1. 
Table C1. Values for I + ( d )  and I x ( d ) ,  defined ky equations (80) and (82). 

d 1, I ,  

2 2ir2-59/3 3 d  - 5912 

0 r2/6-3/2 a213 - 3 
1 0.09911 0.165 19 

3 0.05560 0.07784 
4 154-148 20& - 59213 
5 0.03584 0.04608 
6 280rr2/3 - 13817115 0.03718 

The sums (80) and (82) can be evaluated numerically for general a. We note, 
however, that for even d (i.e. integer a), these sums can be evaluated analytically, 
since the ratio of gamma functions in the summand yields a simple, factored 
polynomial in the denominator. Also, the cvaluation of I$  is simplified by the 
following relation between I,, and I, 

The results for I+ and I x ,  for 0 < d < 6, are given in table C1. 
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